Enhanced stimulation of anti-breast cancer T cells responses by dendritic cells loaded with poly lactic-co-glycolic acid (PLGA) nanoparticle encapsulated tumor antigens

نویسندگان

  • Soodabeh Iranpour
  • Vahid Nejati
  • Nowruz Delirezh
  • Pouria Biparva
  • Sadegh Shirian
چکیده

BACKGROUND Developing safe and effective cancer vaccine formulations is a primary focus in the field of cancer immunotherapy. Dendritic cells (DC) are currently employed as cellular vaccine in clinical trials of tumor immunotherapy. Recognizing the critical role of DCs in initiating anti-tumor immunity has resulted in the development of several strategies that target vaccine antigens to DCs to trigger anti-tumor T cell responses. To increase the efficiency of antigen delivery systems for anti-tumor vaccines, encapsulation of tumor-associated antigens in polymer nanoparticles (NPs) has been established. METHODS In this study, the effect of tumor lysate antigen obtained from three stage III breast cancer tissues encapsulated within PLGA NPs to enhance the DC maturation was investigated. The T-cell immune response activation was then fallowed up. Fresh breast tumors were initially used to generate tumor lysate antigens containing poly lactic-co-glycolic acid (PLGA) NP. The encapsulation efficiency and release kinetics were profiled. The efficiency of encapsulation was measured using Bradford protein assays measuring the dissolved NPs. The stability of released antigen from NPs was verified using SDS-PAGE. To evaluate the hypothesis that NPs enhances antigen presentation, including soluble tumor lysate, tumor lysate containing NPs and control NPs the efficiency of NP-mediated tumor lysate delivery to DCs was evaluated by assessing CD3+ T-cell stimulation after T cell/and DCs co-culture. RESULTS The rate of encapsulation was increased by enhancing the antigen concentration of tumor lysate. However, increasing the antigen concentration diminished the encapsulation efficiency. In addition, higher initial protein contenting NPs led to a greater cumulative release. All three patients released variable amounts of IFN-γ, IL-10, IL-12 and IL-4 in response to re-stimulation. T cells stimulated with lysate-pulsed DCs induced a substantial increase in IFN-γ and IL-12 production. We demonstrated that NPs containing tumor lysate can induce maturation and activation of DCs, as antigen alone does. CONCLUSION PLGA-NPs are attractive vehicles for protein antigen delivery which effectively induce stimulation and maturation of DCs, allowing not only an enhanced antigen processing and immunogenicity or improved antigen stability, but also the targeted delivery and slow release of antigens.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced stimulation of anti-ovarian cancer CD8(+) T cells by dendritic cells loaded with nanoparticle encapsulated tumor antigen.

PROBLEM Dendritic cell (DC)-based cancer therapies are favored approaches to stimulate anti-tumor T-cell responses. Unfortunately, tolerance to tumor antigens is difficult to overcome. Biodegradable poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NP) are effective reagents in the delivery of drugs and tumor-associated antigens (TAA). In this study, we assessed the capacity of a PLGA NP-base...

متن کامل

Enhanced anti-tumor immune responses and delay of tumor development in human epidermal growth factor receptor 2 mice immunized with an immunostimulatory peptide in poly(D, L-lactic-co-glycolic) acid nanoparticles nanoparticles

Introduction: Cancer vaccines have the potential to induce curative anti-tumor immune responses and better adjuvants may improve vaccine efficacy. We have previously shown that Hp91, a peptide derived from the B box domain in high-mobility group box protein 1 (HMGB1), acts as a potent immune adjuvant. Method: In this study, Hp91 was tested as part of a therapeutic vaccine against human epiderma...

متن کامل

Study of multifunctional PLGA-SPION nanoparticles loaded with Gemcitabine as radiosensitizer

Abstract This study aimed to modify the biological response of cells to ionizing radiation by combination therapy using radio-sensitizer agent and anticancer drug. Super paramagnetic iron oxide nanoparticles (SPIONs) were prepared and used with gemcitabine (Gem). These two agents were encapsulated simultaneously into poly (D, L-lactic-co-glycolic acid) (PLGA) to form multifunc...

متن کامل

Liposome and polymer-based nanomaterials for vaccine applications

Nanoparticles (NPs) are effective and safe adjuvants for antigen delivery in modern vaccinology. Biodegradable nanomaterials with suitable properties are frequently applied for conjugation or loading with antigens; they protect the antigens from degradation in vivo. NPs are applied as effective delivery system to facilitate antigen uptake by antigen presenting cells (APCs) and especially dendri...

متن کامل

Evolution of availability of curcumin inside poly-lactic-co-glycolic acid nanoparticles: impact on antioxidant and antinitrosant properties

PURPOSE Curcumin exhibits antioxidant properties potentially beneficial for human health; however, its use in clinical applications is limited by its poor solubility and relative instability. Nanoparticles exhibit interesting features for the efficient distribution and delivery of curcumin into cells, and could also increase curcumin stability in biological systems. There is a paucity of inform...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2016